SPORT: Sharing Proofs of Retrievability across Tenants
نویسندگان
چکیده
Proofs of Retrievability (POR) are cryptographic proofs which provide assurance to a single tenant (who creates tags using his secret material) that his files can be retrieved in their entirety. However, POR schemes completely ignore storage-efficiency concepts, such as multi-tenancy and data deduplication, which are being widely utilized by existing cloud storage providers. Namely, in deduplicated storage systems, existing POR schemes would incur an additional overhead for storing tenants’ tags which grows linearly with the number of users deduplicating the same file. This overhead clearly reduces the (economic) incentives of cloud providers to integrate existing POR/PDP solutions in their offerings. In this paper, we propose a novel storage-efficient POR, dubbed SPORT, which transparently supports multi-tenancy and data deduplication. More specifically, SPORT enables tenants to securely share the same POR tags in order to verify the integrity of their deduplicated files. By doing so, SPORT considerably reduces the storage overhead borne by cloud providers when storing the tags of different tenants deduplicating the same content. We show that SPORT resists against malicious tenants/cloud providers (and against collusion among a subset of the tenants and the cloud). Finally, we implement a prototype based on SPORT, and evaluate its performance in a realistic cloud setting. Our evaluation results show that our proposal incurs tolerable computational overhead on the tenants and the cloud provider.
منابع مشابه
A Prunable Blockchain Consensus Protocol Based on Non-Interactive Proofs of Past States Retrievability
Bitcoin [1] is the first successful decentralized global digital cash system. Usefulness of the mining process requiring a lot of computational resources to be wasted, though, remains disputable. One of possible alternatives for useful Proof-of-Work schemes, Permacoin [2], is using non-interactive proofs of a static dataset retrievability thus providing a mechanism to store a huge dataset being...
متن کاملLightweight Delegatable Proofs of Storage
Proofs of storage (including Proofs of Retrievability and Provable Data Possession) is a cryptographic tool, which enables data owner or third party auditor to audit integrity of data stored remotely in a cloud storage server, without keeping a local copy of data or downloading data back during auditing. We observe that all existing publicly verifiable POS schemes suffer from a serious drawback...
متن کاملCloud Data Auditing Using Proofs of Retrievability
Cloud servers offer data outsourcing facility to their clients. A client outsources her data without having any copy at her end. Therefore, she needs a guarantee that her data are not modified by the server which may be malicious. Data auditing is performed on the outsourced data to resolve this issue. Moreover, the client may want all her data to be stored untampered. In this chapter, we descr...
متن کاملProofs of Data Possession and Retrievability Based on MRD Codes
Proofs of Data Possession (PoDP) scheme is essential to data outsourcing. It provides an efficient audit to convince a client that his/her file is available at the storage server, ready for retrieval when needed. An updated version of PoDP is Proofs of Retrievability (PoR), which proves the client’s file can be recovered by interactions with the storage server. We propose a PoDP/PoR scheme base...
متن کاملChatty Tenants and the Cloud Network Sharing Problem
The emerging ecosystem of cloud applications leads to significant inter-tenant communication across a datacenter’s internal network. This poses new challenges for cloud network sharing. Richer inter-tenant traffic patterns make it hard to offer minimum bandwidth guarantees to tenants. Further, for communication between economically distinct entities, it is not clear whose payment should dictate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016